Optimal Approximate Matrix Product in Terms of Stable Rank
نویسندگان
چکیده
We prove, using the subspace embedding guarantee in a black box way, that one can achieve the spectral norm guarantee for approximate matrix multiplication with a dimensionality-reducing map having m = O(r̃/ 2) rows. Here r̃ is the maximum stable rank, i.e., the squared ratio of Frobenius and operator norms, of the two matrices being multiplied. This is a quantitative improvement over previous work of [Magen and Zouzias, SODA, 2011] and [Kyrillidis et al., arXiv, 2014] and is also optimal for any oblivious dimensionality-reducing map. Furthermore, due to the black box reliance on the subspace embedding property in our proofs, our theorem can be applied to a much more general class of sketching matrices than what was known before, in addition to achieving better bounds. For example, one can apply our theorem to efficient subspace embeddings such as the Subsampled Randomized Hadamard Transform or sparse subspace embeddings, or even with subspace embedding constructions that may be developed in the future. Our main theorem, via connections with spectral error matrix multiplication proven in previous work, implies quantitative improvements for approximate least squares regression and low rank approximation, and implies faster low rank approximation for popular kernels in machine learning such as the gaussian and Sobolev kernels. Our main result has also already been applied to improve dimensionality reduction guarantees for k-means clustering, and also implies new results for nonparametric regression. Lastly, we point out that the proof of the “BSS” deterministic row-sampling result of [Batson et al., SICOMP, 2012] can be modified to obtain deterministic row-sampling for approximate matrix product in terms of the stable rank of the matrices. The original “BSS” proof was in terms of the rank rather than the stable rank. 1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems
منابع مشابه
Co-Occurring Directions Sketching for Approximate Matrix Multiply
We introduce co-occurring directions sketching, a deterministic algorithm for approximate matrix product (AMM), in the streaming model. We show that co-occurring directions achieves a better error bound for AMM than other randomized and deterministic approaches for AMM. Co-occurring directions gives a (1 + ")-approximation of the optimal low rank approximation of a matrix product. Empirically o...
متن کاملCo-Occuring Directions Sketching for Approximate Matrix Multiply
We introduce co-occurring directions sketching, a deterministic algorithm for approximate matrix product (AMM), in the streaming model. We show that co-occuring directions achieves a better error bound for AMM than other randomized and deterministic approaches for AMM. Co-occurring directions gives a (1 + ε)-approximation of the optimal low rank approximation of a matrix product. Empirically ou...
متن کاملHaar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems
In this paper, Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems. Firstly, using necessary conditions for optimality, the problem is changed into a two-boundary value problem (TBVP). Next, Haar wavelets are applied for converting the TBVP, as a system of differential equations, in to a system of matrix algebraic equations...
متن کاملNew operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کاملHigher rank numerical ranges of rectangular matrix polynomials
In this paper, the notion of rank-k numerical range of rectangular complex matrix polynomials are introduced. Some algebraic and geometrical properties are investigated. Moreover, for ϵ > 0; the notion of Birkhoff-James approximate orthogonality sets for ϵ-higher rank numerical ranges of rectangular matrix polynomials is also introduced and studied. The proposed denitions yield a natural genera...
متن کامل